Fork me on GitHub

算法-直方图中的最大矩形

直方图中最大矩形((Largest Rectangle in Histogram))

问题:直方图是由排列在同一基线上的一系列矩形组成的多边形。为了简单起见,假设这些矩形的宽度相等但高度可能不同。例如,下图1给出了一个直方图,其中各个矩形的高度为3、2、5、6、1、4、4,宽度为标准1单位。当给定了一个保存所有矩形高度的数组时,如何找到其中最大的矩形。对于给定的例子,最大矩形如图2阴影部分所示:
这里写图片描述

  • 时间复杂度:O(n) (高效率)
  • 空间复杂度:O(n) (栈开销)

这个问题有多种解法,包含枚举、动态规划、分治等等。
这儿我们采用一种巧妙的方法,使用堆栈,将复杂度降到最低。

算法思想:

1、新建一个空栈,将 A[1] 压入栈中,此时 A[1] 位于栈顶。

2、A[i] 与栈顶元素比较。如果A[i] 大,那么将其入栈。如果两者相等,跳过,继续下一个元素。

  • 如果A[i]小于当前栈顶元素,说明已经找到第一个位于栈顶右边的比它小的值(此时这个较小的元素还未入栈),在它的左边(在栈内就是它脚下的元素)即为第一个左边比它小的值。此时需要这样做:
- 以栈顶元素为最小高度计算最大矩形面积,并更新现在的最大面积,宽度为左边界到右边界。

- 弹出栈顶元素。

- 重复第2步。

3.扫描完后,一般情况下会剩下一个单调递增的堆栈,那么一个一个出栈计算面积就可以了。左边依旧还是栈顶下面那个值,右边这个时候就不存在了,最后一个栈状态的栈顶即为右边界。


就拿上面的输入为例:[3、2、5、6、1、4、4]

首先:记左边界为字母L,右边界为字母R,图中红色框为最新最大面积。

这里写图片描述

1、 堆栈[ ],开始扫描i从0到6;

2、 i=0,因为堆栈为空,把3入栈【此时堆栈为[0]】

3、 i=1,因为a[i] =2 < a[top] = a[0] =3,所以这个时候0出栈,并且计算a[0]作为矩形最小高度的面积,因为堆栈已空,所以左边界L就是0,右边界R就是i−1=0;所以最大面积就是a[0]×(R−L+1)=3;【此时堆栈为[ ]】然后再把i=1入栈。【此时堆栈[1]】,如上图。

这里写图片描述

4、 i=2,因为a[i] =5 > a[top] = a[1] =2,所以i=2入栈。【此时堆栈[1,2]】

5、 i=3,因为a[i] =6 > a[top] = a[2] =5,所以i=3入栈。【此时堆栈[1,2,3]】

6、 i=4,因为a[i] =1 < a[top] = a[3] =6,所以3要出栈,并且计算a[3]=6作为矩形最小高度的面积,左边就是栈顶下一个值加1,L=2+1=3,右边R=i−1=3,所以最大面积就是a[3]×(R−L+1)=6 ;【此时堆栈[1,2]】。如上图。

这里写图片描述

此时a[i] =1 < a[top] = a[2] =5,所以2也要出栈,并且计算a[2]=5作为矩形最小高度的面积,左边就是栈顶下一个值加1,L=1+1=2,右边R=i−1=3,所以最大面积就是a[2]×(R−L+1)=10 ;【此时堆栈[1]】。如上图 。

这里写图片描述

再此时a[i] =1 < a[top] = a[1] =2,所以1也要出栈,并且计算a[1]=2作为矩形最小高度的面积,因为栈已空,则左边界为0,右边界R=i−1=3,所以最大面积就是a[1]×(R−L+1)=8 ,小于10,取10 ; 最后i=4入栈。【此时堆栈[4]】。如上图。

7、 i=5,因为a[i] =4 > a[top] = a[4] =1,所以i=5入栈。【此时堆栈[4,5]】

8、 i=6,因为a[i] =4 = a[top] = a[4] =1,跳过。【此时堆栈[4,5]】

9、 i=7,扫描完毕了,此时a[4],a[5],a[6]必然单调增。然后再一个个出栈。

这里写图片描述

10、top=5出栈,计算面积,L=4+1=5,右边没值,相当于右边还有一个a[i=7]=0的矩形,那么R=7−1=6,所以面积就是a[5]×(R−L+1)=8。【此时堆栈[4]】。如上图。

这里写图片描述

11、top=4出栈,计算面积,栈空,左边为0,右边没值,相当于右边还有一个a[i=7]=0的矩形,那么R=7−1=6,所以面积就是a[4]×(R−L+1)=7。【此时堆栈[ ]】。如上图。

12.计算完毕;


算法如下(java):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
public StackItem(int height, int index) {
// TODO Auto-generated constructor stub
this.height=height;
this.index=index;
}
public int height;
public int index;
}
public int MaxRecttangleArea(int A[],int n){
int maxRean=0;
if(null==A || A.length<=0){
return maxRean;
}
Stack<StackItem> S=new Stack<StackItem>();
//先往栈中压入一个起始元素,为了进入后面的while循环
S.push(new StackItem(Integer.MIN_VALUE,-1));
//这儿循环A.length次,让元素全部出栈
for(int i=0;i<n;i++){
StackItem cur=new StackItem((i<n?A[i]:Integer.MIN_VALUE),i);
//lastElement 为栈顶
if(cur.height>S.lastElement().height){
S.push(cur);
continue;
}
while(S.size()>0){
StackItem prev=S.lastElement();
int area=(i-prev.index)*prev.height;
if(area>maxRean){
maxRean=area;
}
prev.height=cur.height;
if(prev.height>S.get(S.size()-2).height){
break;
}
S.pop();
}
}
return maxRean;
}

我们测试一下时间:

1
2
3
4
5
6
7
8
public static void main(String[] arg){
int[] A=new int[]{3,2,5,6,1,4,4};
MaxRectangleArea clazz=new MaxRectangleArea();
long time=System.nanoTime();
System.out.println(clazz.MaxRecttangleArea(A, 7)+"");
long estimatedTime = System.nanoTime() - time;
System.out.println(estimatedTime);
}

打印结果如下:

1
2
10
1169687

总耗时1ms。


csdn地址:http://blog.csdn.net/u012534831
github地址:https://github.com/qht1003077897
个人博客地址:https://qht1003077897.github.io/
QQ:1003077897